Assessment of natural organic matter in Irish drinking water

Irish NOM 2016

Hotel Meyrick, Galway City

16th & 17th June

Project Team:

Liwen Xiao - TCD

Xinmin Zhan – NUIG

Francesco Pilla – TCD

Bruce Misstear – TCD

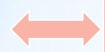
Connie O'Driscoll – TCD/ NUIG

Project collaborators:

Carmel Ramwell – FERA

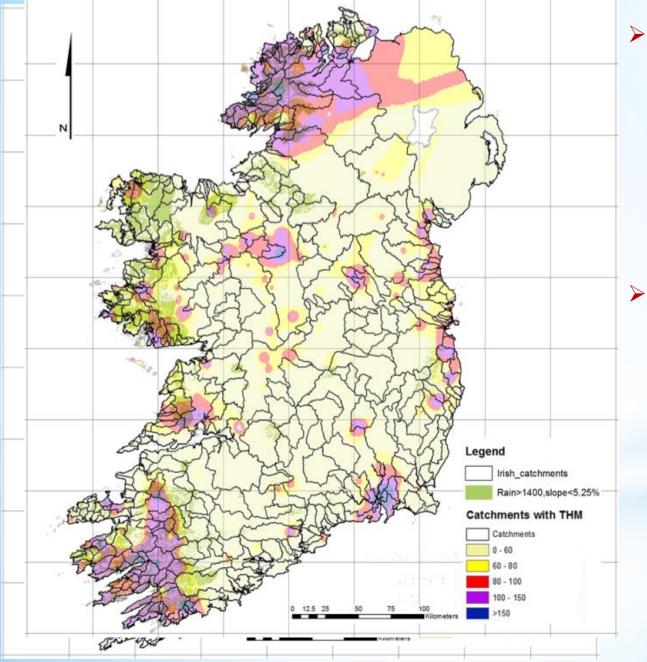
Brian MacDomhnaill – NFGWS

Sean Corrigan – Irish Water



Work Packages and Deliverables

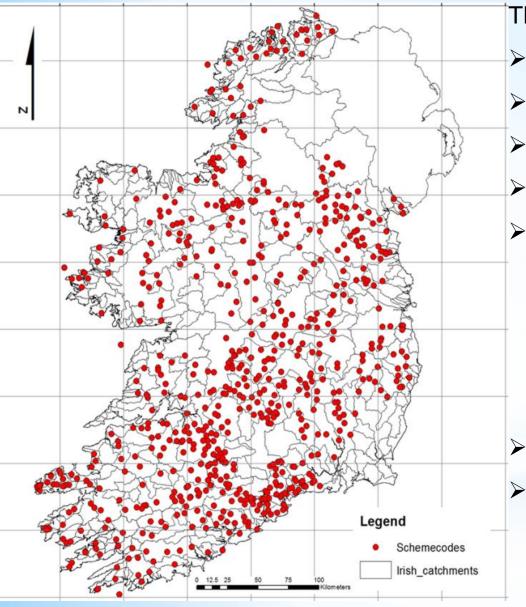
WP1. Identify high risk catchments for public and private water supplies in relation to NOM across Ireland


WP2. Undertake a surveying and monitoring programme in a six high risk catchments

WP3. Estimate likely NOM concentrations in surface and ground water sources in the selected catchments using predictive modeling

WP4. Assess the health risks of NOM to humans based on current knowledge

WP5. Develop guidelines to reduce the risk of NOM in Irish waters


WP1. Identify high risk catchments for NOM

Data acquisition (National Soil Dataset; DIPM; LTA Rainfall; DEM; River & Lakes segments; Groundwater vulnerability)

- High risk categories:
 - Peat (presence)
 - Rainfall (>1400 mm
 - high risk)
 - Slope (<5.25 %)</p>
 - Groundwater
 vulnerability
 (extreme & high)

WP1. Identify high risk catchments for NOM

THM Dataset - 2006 - 2013

- 685 schemes (2,289,539 pop.)
- ▶ 1,062,700 m³
- 270 Surface water (1,777,888 pop.)
- ▶ 414 Groundwater (511,651 pop.)
- Treatment (Level 1 absence of adequate treatment to remove organic matter; Level 2 - the presence of treatment that is incapable of removing high organic matter)
- Vulnerability (Surface, High, Low)
- % Peat; Upland; Forest; Artificial surfaces; Arable land; Permanent crops; Pastures; Heterogeneous agricultural

WP1. Identify high risk catchments for NOM

Analysis of Variance

Source	DF	P-Value
peat_perc	1	0.163
Pastures_perc	1	0.006
Treat_Code_1	1	<0.001
Vulernability_1	2	<0.001
peat_perc*Pastures_perc	1	<0.001
Pastures_perc*forest_perc	1	0.010
_peat_perc*Treat_Code_1	1	0.008

Model Summary -R² 62.86% of the variation

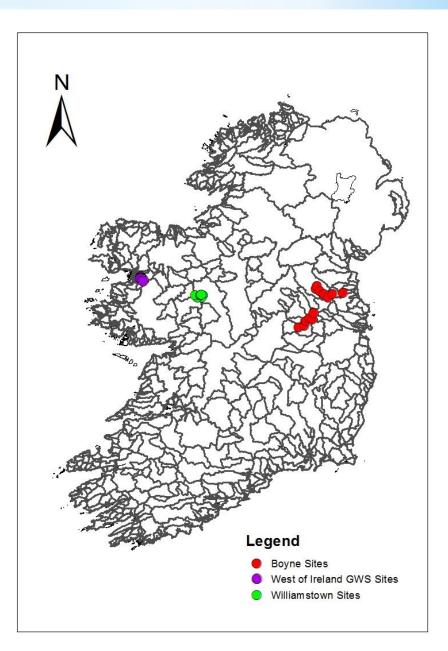
Summary

Treatment code Level 1 absence of adequate treatment to remove organic matter:

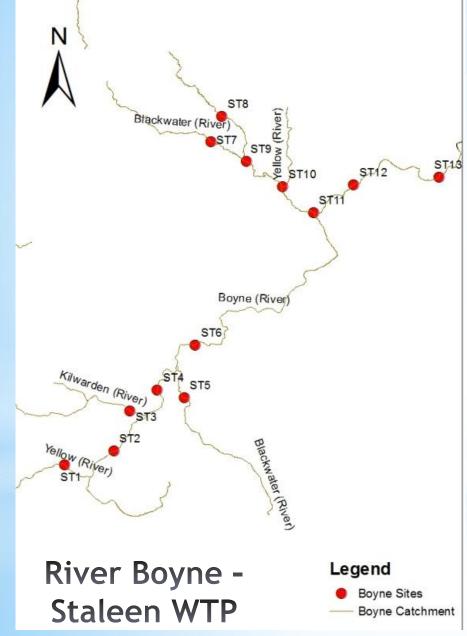
THMs are likely to increase with increasing % peat & or % peat & pastures in the catchment

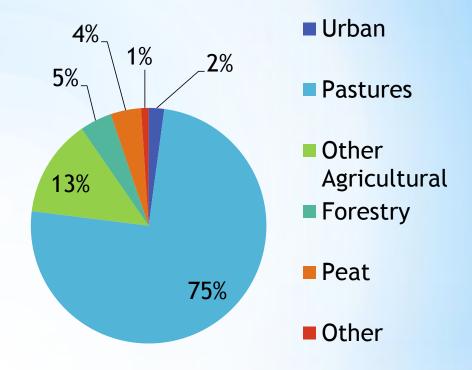
Treatment code Level 2 - the presence of treatment that is incapable of removing high organic matter

THMs are likely to increase with increasing peat and pastures in the catchment


WP2. Survey and monitor programme for NOM

Sites:


- Boyne
- Williamstown
- West of Ireland Private GWS


Methods:

- 18 months water sample collection
- Holistic approach catchment abstraction – treatment – network
- Using traditional approaches to quantify NOM
- Using 'novel' approaches such as F EEM to examine NOM character

WP2. Survey and monitor programme for NOM

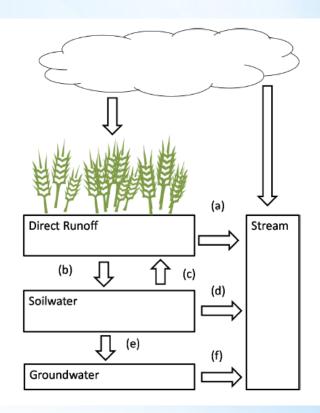
Yellow - peat workings Longwood - forestry Kinnegad River - MWWTP effluent Kells Blackwater -WWTP effluents & agricultural Moynalty - intensive agriculture Yellow Blackwater - intensive agriculture

WP2. Survey and monitor programme for NOM

Date	Konelab	BIOTECTOR			UV-Vis		Complete Lab Solutions Aqualog	
	NH4	SRP	TON	D-TOC	UV ₂₅₄	SUVA	THMs	F-EEMS
Aug-14	↓ ✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark
Sep-14	↓ ✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Oct-14	↓ ✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Nov-14	↓ ✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Dec-14	↓ ✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Jan-15	5 ✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Feb-15	5 √	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Mar-15	5 √	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
May-15	5 √	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Jun-15	5 √	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Jul-15	5 ✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Aug-15	5 🗸	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Sep-15	5 ✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Oct-15	5 √	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Nov-15	5 🗸	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Apr-16	5 ✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

WP3. Estimate NOM using predictive modelling

PERSIST


Daily Time Series:

- Air Temperature
- Precipitation

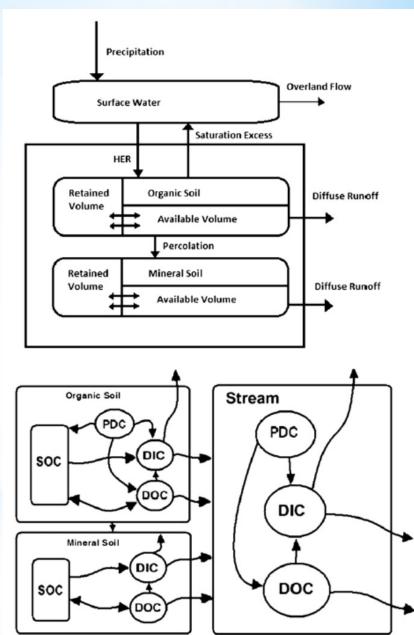
Daily Time Series:

- Soil Moisture Deficit
- Hydrologically Effective Rainfall
- * Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport (PERSiST) (Futter et al., 2014)

WP3. Estimate NOM using predictive modelling

INCA-C

Daily Time Series:


- Air Temperature
- Precipitation
- Soil Moisture Deficit
- Hydrologically Effective Rainfall

Daily Time Series:

• DOC

 Integrated Catchments model for Carbon (INCA-C) (Futter et al., 2007)

Work still to do:

- * Analyse the Fluorescence-Excitation Emission Matrices with PARAFAC
- Calibrate the INCA-C model with our DOC data and run future simulations under different climate change scenarios
- * Assess the toxicity risk of THMs to Humans

*Thank you for your attention