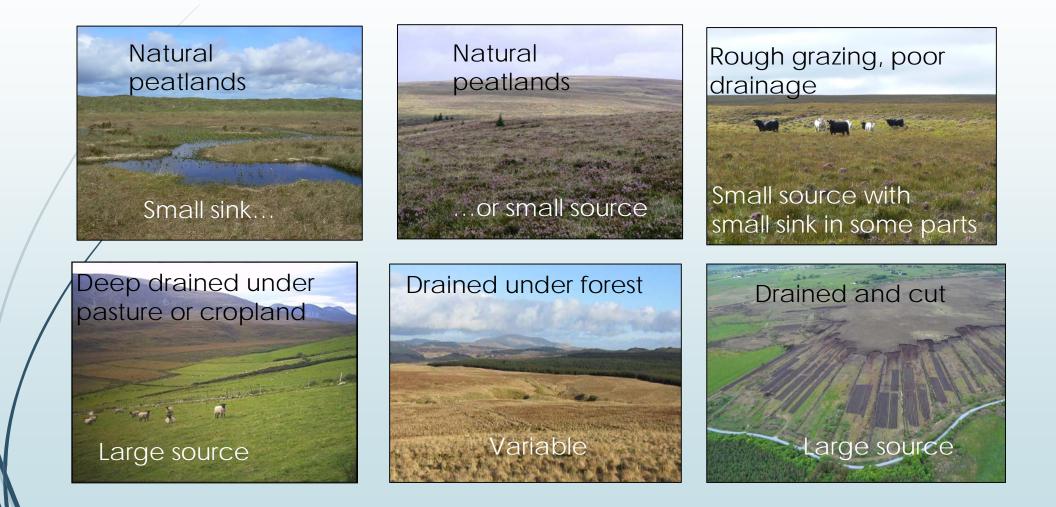


Waterborne carbon from organic soils in Ireland Role in the Net Ecosystem Carbon Balance

Florence Renou-Wilson

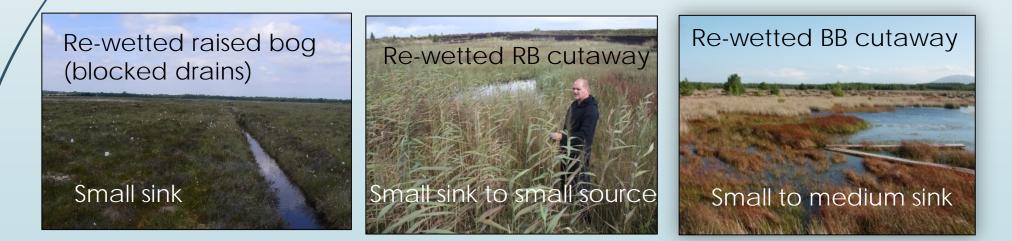
Chris Barry (AFBI) and David Wilson (Earthy Matters Environmental Consultants)

Irish NOM 2016

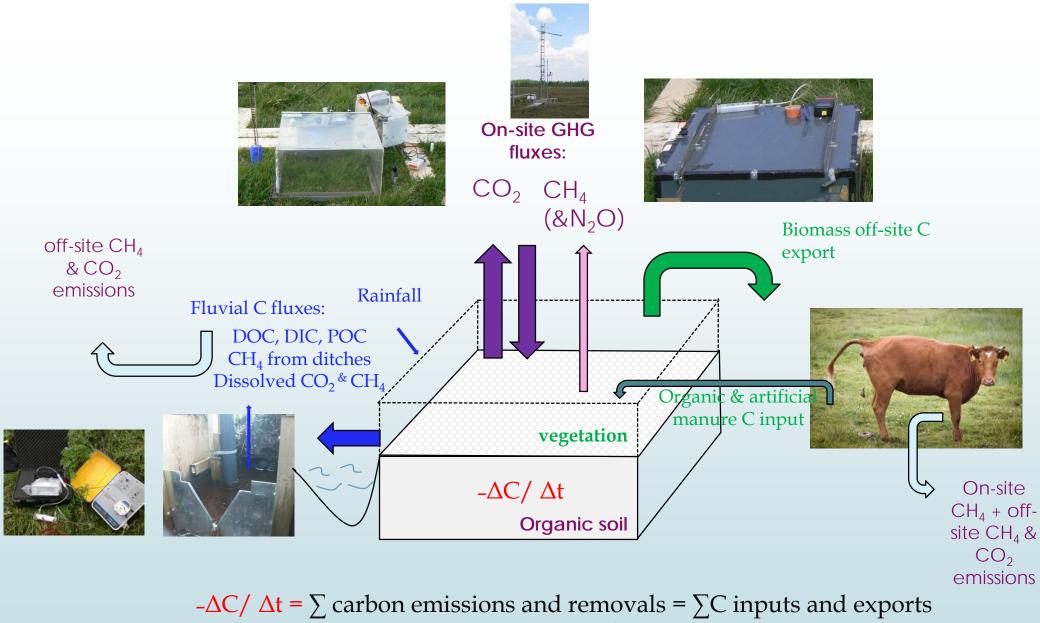

Organic soils/peat soils

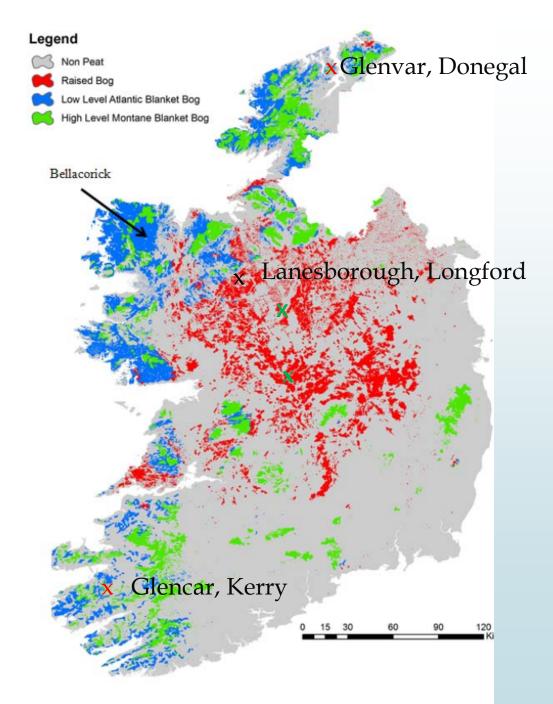
- 1.3 M ha (1/5th territory); extensively modified
- Carbon dense soil (>15% organic C but most peat soils 40-55% C)
- Natural peatlands are sink of CO₂ and source of CH₄ =>accumulate C over millennia
- Drained organic soils are hot spots for CO₂ emissions (Renou-Wilson et al 2014; Wilson et al 2015)
- Aquatic C loss large component of the C budget in peat catchment (Dinsmore et al, 2010)
 - Net Ecosystem Carbon Budget = $\Delta CO_2 + \Delta CH_4 + DOC + POC + DIC + pCO_2$
 - Fluvial loss represents 15-50% of total GHG emissions (Evans et al 2016) => off-site CO₂ emissions
- Significance of DOC acknowledged in the 2013 Wetlands Supplement (IPCC 2014)

Today: waterborne C from Irish organic soils


- Natural and managed organic soils: GHG budgets
- Waterborne C fluxes from natural and utilised organic soils in Ireland
- Significance from a climate perspective
 - Net Ecosystem Carbon Balance (gaseous + fluvial)
 - Compare with default emission factors in Wetlands Supplement
 - Fate of waterborne C

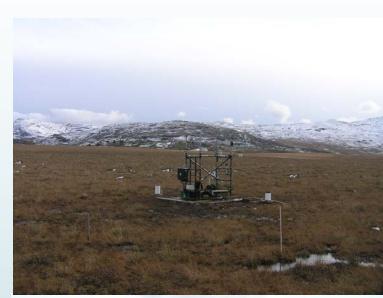
GHG emissions/removals for peatlands LUC


GHG emissions/removals for peatlands LUC


Peatland land use categories, estimated areas (ha) and published/ ongoing C studies in ROI.

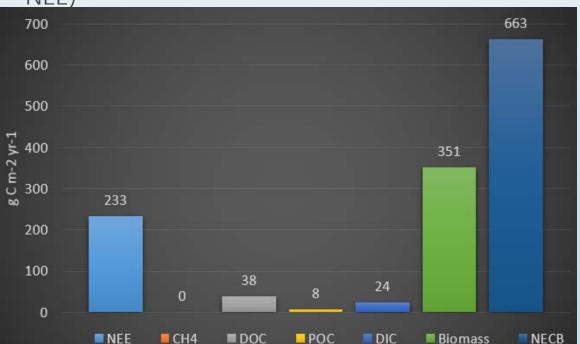
Land Use Category	Area (ha)	% total area	GHG studies
Pristine			
Blanket bog	216,599	13.6	Laine et al.(<u>2007</u>), Sottocornola & Kiely (1 <u>2005, 2010</u>), Koehler et al.(<u>2011</u>), McVeigh et al.(<u>2014</u>)
Raised bog	30,874	1.9	Wilson(<u>2008</u>)
Fen	21,277	1.3	
Agriculture			
Grassland drained	293,765	18.4	Renou-Wilson et al.(<u>2014</u>), Barry et al.(<u>2015</u>)
Grassland rewetted	Unknown	Unknown	Renou-Wilson et al. (<u>2016</u>)
Arable	1,235	0.1	
Forestry			
Drained	293,000	18.4	Byrne et al.(<u>2007</u>), Saunders et al. (In prep)
Rewetted	12,000	0.8	Rigney et al. (PhD) & Renou-Wilson et al (In prep)
Industrial peat			
extraction			
Production fields	70,000	4.4	Wilson et al.(<u>2015</u>)
Scrub	20,000	1.3	Byrne et al.(<u>2007</u>)
Rewetted	23,000	1.4	Wilson et al.(<u>2007</u> , <u>2009</u> , <u>2012</u> , <u>2013</u> , <u>2016</u>)
Domestic peat extraction			
Blanket bog	286,516	18.0	Renou-Wilson et al.(2011)
Raised bog	271,692	17.0	Wilson et al.(<u>2015</u>)
Rewetted/restored	Unknown	Unknown	Regan et al. (NPWS funded), Renou-Wilson et al (In prep)
Degraded			
(overgrazing)			
Blanket bog	54,205	3.4	

= Net Ecosystem Carbon Balance


- DOC and POC fluxes quantified at 3 sites with the purpose of integrating it into a Net Ecosystem Carbon Balance.
 - 1 natural peatland (Kerry)
 - 2 managed grasslands:
 - 1 nutrient poor (Donegal)
 - 1 nutrient rich (Longford)
- DIC fluxes (incl. pCO₂) measured at 2 grassland sites

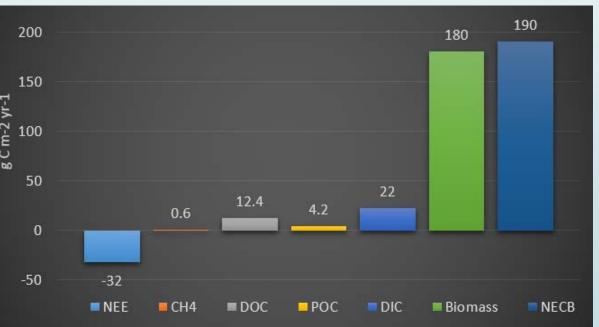
Natural Atlantic blanket bog: Kerry (Koehler et al, 2011)

- DOC flux = 14 g C m⁻² yr⁻¹ Low range of temperate natural peatlands 21 g C m⁻² yr⁻¹ (Evans et al 2016)
- POC flux =1 g C m⁻² yr^{-1 (=} rainfall DOC input)
- Highest DOC flux with high rainfall season
- Does not accumulate DOC as flushed by rain
- DOC = 29% of NEE but 2/6 years DOC+CH4 > NEE



Rich organic soils under grassland: Longford (Renou-Wilson et al, 2014; Barry et al 2016)

- Consistent DOC concentrations; high POC variations
- DOC flux = 37.7 g C m⁻² yr⁻¹
- POC flux = 8 g C m⁻² yr⁻¹
- DIC flux = 24 g C m⁻² yr⁻¹
- Total waterborne C export: 70 g C m⁻² yr⁻¹ (29% of NEE)



Poor organic soils under grassland: Donegal (Renou-Wilson et al, 2014; Barry et al, 2016)

- DOC conc peaks after dry period; Large IAV
- DOC flux = 12.4 g C m⁻² yr⁻¹
- POC flux = 4.2 C m⁻² yr⁻¹
- DIC flux = 22 g C m⁻² yr⁻¹

Total waterborne C export: 39 g C m⁻² yr⁻¹ (≈100% NEE)

Comparing DOC with IPCC default EF

TABLE 2.2 DEFAULT DOC EMISSION FACTORS FOR DRAINED ORGANIC SOILS							
Climate zone	DOC _{FLUX_NATURAL} (t C ha ⁻¹ yr ⁻¹)	Δ DOC _{DRAINAGE} ^a	Frac _{DOC-CO2}	EF _{DOC_DRAINED} (t C ha ⁻¹ yr ⁻¹)			
Boreal	0.08 (0.06-0.11)		0.9 (± 0.1)	0.12 (0.07-0.19)			
Temperate	0.21 (0.17-0.26)	0.60 (0.43–0.78)		0.31 (0.19-0.46)			
Tropical	0.57 (0.49–0.64)	(0.15 0.70)		0.82 (0.56-1.14)			
0.5			V	Vetland Supplement (IPCC,			
0.45		т					
0.4	1						
0.35	;	0.38 Nutrient rich grassland					
0.3	3	0.31 Default EF					
> 0.25							
다. 다. 0.25 막 0.2	2						
↔ ₩ 0.15		0.18 Nutrient poor grassland					
0.1	L						
0.05	5						
0)						

Fate of Waterborne C: contribution to CO₂ emissions or lake/marine sediments?

DOC

- IPCC fraction = 90% re-mineralised back to atmosphere
 - Rapidly photodegraded
 - CO₂ emissions>sedimentary C burial in peaty catchment
 - Small sink in estuaries via flocculation
 - Small sink in marine sediments
- Our studies: Labile DOC using dark incubations
 - potentially 5-10% to be re-mineralised over weeks
 - but missing photodegradation and
 - use by heterotrophic organisms

POC

- Less reactive than DOC
- Likely redeposited in downstream floodplain = reburial

An integrated C observation and analysis system

- Current GHG & fluvial C monitoring not adequate given 20% cover
- Not representative of all LUCs (turbary > 0.5M ha)
- Need to increase scale and duration of measurement from research scale → ICOS

- DOC & POC in specific sites: cutover and cutaway (Lundin et al. 2015)
- Rewetted bogs: reversible effect of drainage on DOC (Evans et al. 2016)
- Climate change vulnerability (increased winter rainfall when DOC exports are highest)

Take-home message

- Organic soils in Ireland: a carbon issue at soil-atm and soil-water interfaces
- Large variability in waterborne C losses from managed organic soils in Ireland with great significance from a climate perspective
 - Nutrient poor wet grassland over organic soils: DOC ≈ NEE (overall small source/neutral)
 - Nutrient rich grassland over organic soils DOC $\approx 30\%$ NEE (overall large source)
- C observations in Irish peatlands not adequate (→Integrated Carbon Observation System)

References

- Barry, C.D., Renou-Wilson, F., Wilson, D., Müller, C., Foy, R.H., 2016. Magnitude, form and bioavailability of fluvial carbon exports from Irish organic soils under pasture. Aquatic Sciences 78, 541-560.
- Evans, C., Renou-Wilson, F., Strack, M., 2016. The role of waterborne carbon in the greenhouse gas balance of drained and re-wetted peatlands. Aquatic Sciences 78, 573-590.
- Dinsmore, K.J., Billet, M.F., Skiba, U.M., Rees, R.M., Drewer, J., Helfter, C., 2010. Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Global Change Biology 16, 2750-2762.
- IPCC, 2014. 2013 Supplement to the 2006 Inter-Governmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories: Wetlands. IPCC, Switzerland.
- Koehler, A.-K., Sottocornola, M., Kiely, G., 2011. How strong is the current carbon sequestration of an Atlantic blanket bog? Global Change Biology 17, 309-319.
- Renou-Wilson, F., Barry, C., Müller, C., Wilson, D., 2014. The impacts of drainage, nutrient status and management practice on the full carbon balance of grasslands on organic soils in a maritime temperate zone. Biogeosciences 11, 4361-4379.
- Wilson, D., Dixon, S.D., Artz, R.R.E., Smith, T.E.L., Evans, C.D., Owen, H.J.F., Archer, E., Renou-Wilson, F., 2015. Derivation of greenhouse gas emission factors for peatlands managed for extraction in the Republic of Ireland and the United Kingdom. Biogeosciences 12, 5291-5308.